
Decidable Subsets of CCS

based on the paper with the same title by Christensen, Hirshfeld and

Moller from 1994

Sven Dziadek

Abstract

Process algebra is a very interesting framework
for describing and analyzing concurrent systems.
Therefore CCS is used very often and consid-
ered pretty important. But it is undecidable if
two CCS agents are bisimilar.

Luckily Christensen, Hirshfeld and Moller
showed 1994 in their paper “Decidable Subsets
of CCS” that bisimulation for CCS without
communication or without restriction and rela-
belling is decidable. As this subset is powerful
enough for many problems, this is an interesting
discovery. In addition they derived a complete
axiomatisation for these two sublanguages. I
want to present this work.

1 Introduction

Over the last 30 years, the study of process
algebras has received a great deal of attention.
As CCS is one of the first and simplest calculi
to analyze processes, it is the basis for most
scientific research in this area. Furthermore it
is powerful enough to compute any computable
function. So it is often used to verify the cor-
rectness of systems. This verification uses some
kind of equivalence between two processes to
prove that a correct process behaves like the one
we want to verify. But because CCS is so pow-
erful the equivalence checking is undecidable.
This makes verification very hard in general.

So the question is in which subsets of CCS the
equivalence checking gets decidable. What al-
ways works is restricting to finite state systems.
But many realistic applications involve infinite
state systems.

Milner and Taubner [2, 3] showed that you
can reduce the halting problem to equivalence
checking if you model Turing machines in full
CCS. For their model they had to use commu-
nication, restriction and relabelling.

Indeed not only the proof depends on these
operations but also sublanguages without com-
munication and sublanguages without restric-
tion and relabelling are decidable. Both sublan-
guages can express a rich class of infinite state
systems. To show the decidability Christensen
et al. used a so called tableau decision method
invented by Hüttel and Stirling [4].

In the end there follows a complete axioma-
tisation of these new subsets.

1.1 CCS

To make sure we all work with the same version
of CCS I briefly define everything we need.

Let Λ be a set of atomic labels that not con-
tains τ . We define Act = Λ ∪ {τ}. We also
need a complementation function · : Act→ Act
with the properties a = a and τ = τ . As pro-
cess variables we use V ar = {X,Y, Z, ...}. CCS
expressions are recursively defined as follows:

E,F ::= 0 X aE E+F

1

E|F E\L E [f]

For the definition holds that X ∈ V ar, a ∈ Act,
L ⊆ Λ and f : Act → Act is a relabelling
function that satisfies f(a) = f(a). Here is a
short description:

• 0 is the nil process which does nothing.

• X is a Variable.

• aE performs first action a and proceeds
then with process E.

• E +F means either process E or F will be
executed. This is the choice operator.

• E | F means process E and F are executed
in parallel. They are independent except
for complementary actions. This is the
composition operator.

• E\L means process E is executed but can-
not perform any actions a or a with a ∈ L.

• E [f] is the process E but all actions get
relabeled by function f .

We define a CCS process as a CCS term
coupled with a finite family of recursive process
equations

∆ = {Xi , Ei : 1 ≤ i ≤ n}

where the Xis are pairwise different and the
Eis are CCS expressions that only use the vari-
ables V ar(∆) = {X1, ..., Xn}. X1 is the leading
variable.

Another assumption that must be made is
that every variable occurrence in the Eis is
guarded. That means every variable appears
in the scope of an action prefix aE. This is a
standard restriction which does not affect the
power of the calculus.

Every CCS process determines a labelled
transition system. The transition relation is
the least relation which preserves the following
rules.

aE
a−→ E

E
a−→ E′

E | F a−→ E′ | F

F
a−→ F ′

E + F
a−→ F ′

E
a−→ E′, F

a−→ F ′
(a 6= τ)

E | F τ−→ E′ | F ′

F
a−→ F ′

E | F a−→ E | F ′
E

a−→ E′
(a, a /∈ L)

E\L a−→ E′\L

E
a−→ E′

E + F
a−→ E′

E
a−→ E′

(X , E ∈ ∆)
X

a−→ E′

E
a−→ E′

E [f]
f(a)−−−→ E′ [f]

Note that all transition graphs are finite-
branching. This is why we restricted to guarded
expressions.

To simplify terms we use a congruence rela-
tion over expressions. This relation makes e.g.
the choice operator commutative and associa-
tive. Moreover we do not want to distinguish
between X | 0 or X. We therefore infer all
expressions modulo ≡:

Definition 1.1. Let ≡ be the smallest congru-
ence relation over process expressions such that
the laws of associativity, commutativity and 0-
absorption hold for choice and composition.

We will from now on always talk about pro-
cesses modulo ≡. This means in particular we
ignore 0 processes in parallel or in sums. We
can do this because bisimilarity (which we will
use) satisfies the basic laws of ≡.

Example 1. Here is a short example to
demonstrate this congruence relation. Let
∆ = {X , a(X | b)}. Then X produces
this infinite-state transition graph (modulo ≡):

· · ·X | b | bX | bX

a a

b b

a

b

The equivalence relation between CCS ex-
pressions which we will use is bisimilarity [5, 2]:

2

Definition 1.2. A bisimulation R is a bi-
nary relation over CCS expressions if whenever
ERF then for each a ∈ Λ,

• if E
a−→ E′ then F

a−→ F ′ for some F ′ with
E′RF ′

• if F
a−→ F ′ then E

a−→ E′ for some E′ with
E′RF ′.

Processes E and F are bisimilar if they are
related by some bisimulation. We then write
E ∼ F .

We also want to introduce V ar(∆)⊗ which
is the set of finite multisets over V ar(∆) =
{X1, ..., Xn} and Greek letters α, β, ... are the
elements of V ar(∆)⊗. Each such α denotes
a CCS process by forming the product of el-
ements of α. Multiplying terms means com-
bining them in parallel using the composition
operator. Note that the empty product is 0.

1.2 Standard form

Definition 1.3. A family ∆ = {Xi , Ei : 1 ≤
i ≤ n} of CCS equations is in standard form
iff every expression Ei is of the form

a1α1 + · · ·+ amαm

with αj ∈ V ar(∆)⊗ for each j.

Again the empty sum is 0.
We want to show that every CCS equation

which does not involve restriction/ relabelling
or does not involve communication can be con-
verted into standard form. We therefore intro-
duce tree lemmata that shall help to prove this.
We first transform processes without communi-
cation into processes without communication
and restriction. Then we eliminate the rela-
belling operator in processes without commu-
nication and restriction. The third lemma will
show how to convert processes without restric-
tion and relabelling into processes in standard
form.

For our proofs we need the recursion axioms
given by Milner [2]:

Fact 1. Let ∆ = {Xi , Ei : 1 ≤ i ≤ n} be an
CCS process. Then it holds:

• Xi ∼ Ei for 1 ≤ i ≤ n.

• If Pi ∼ Ei
{
Pj�Xj

}
for each 1 ≤ i ≤ n

then Pi ∼ Xi for each 1 ≤ i ≤ n.

Ei
{
Pj�Xj

}
describes the process Ei where all

occurrences of Xj are substituted by Pj for all
j with 1 ≤ j ≤ n.

Lemma 1.1. Let ∆ = {Xi , Ei : 1 ≤ i ≤ n}
be an CCS process which does not involve com-
munication (which means that composition is
given by communication-free merge). Then we
can effectively construct another CCS process
∆′ which also does not involve the restriction
operator and for which ∆ ∼ ∆′, which means
their leading variables are bisimilar.

Proof. Let L = {L1, L2, . . . , Lk} be the small-
est set of restriction sets which is closed under
union and contains the empty set L1 = ∅, con-
tains the restriction sets appearing in ∆ and
contains f−1(L) for all L that are already con-
tained and for all f in ∆.

We use some sound axioms as rewrite rules to
push the restrictions in CCS expressions down
to variable level:

0\L ∼ 0

(aE)\L ∼

{
aE\L, if a, ā /∈ L
0, otherwise

(E + F)\L ∼ E\L+ F\L
(E | F)\L ∼ E\L | F\L
E\M\L ∼ E\(M ∪ L)
E [f] \L ∼ E\f−1(L) [f]

These rules are all sound. Notice that distribu-
tivity over composition is only sound because
we only consider processes without communica-
tion.

3

Now let

∆′ = {Yij , Fij : 1 ≤ i ≤ n, 1 ≤ j ≤ k}

where for each s and t, Fst
{
Xi\Lj�Yij

}
is the

term Es\Lt rewritten with the above rules.
By part 1 of Fact 1 we know that Xs ∼ Es.

As bisimilarity is a congruence relation this
implies Xs\Lt ∼ Es\Lt. Now it follows by
the definition of Fst and the soundness of the
rewrite rules that Xs\Lt ∼ Fst

{
Xi\Lj�Yij

}
for

any s and t. So it holds Xs\Lt ∼ Yst for any s
and t by part 2 of Fact 1. In particular, X1 ∼
X1\∅ ∼ Y11 which is the same as ∆ ∼ ∆′.

Lemma 1.2. Let ∆ = {Xi , Ei : 1 ≤ i ≤ n}
be an CCS process which does not involve com-
munication and does not involve the restriction
operator. Then we can effectively construct an
equivalent CCS process ∆′ which also does not
involve the relabelling operator.

Proof. Let F = {f1, f2, . . . , fk} be the smallest
set of relabelling function which contains the
identity function f1 = id, contains all functions
appearing in ∆ and is closed under composition.

Again we use the some sound axioms as
rewrite rules. This time we push the relabellings
in CCS expressions down to variable level:

0 [f] ∼ 0
(aE) [f] ∼ f(a)E [f]

(E + F) [f] ∼ E [f] + F [f]
(E | F) [f] ∼ E [f] | F [f]
E [g] [f] ∼ E [g ◦ f]

Again soundness can easily be seen except for
the rule for the composition operator. This
rule would be wrong if the relabelling function
would create any communication actions but
as we excluded communication in our process
this rule is sound. Note that we do not need
a rule for the restriction operator because this
one is also excluded.

Now let

∆′ = {Yij , Fij : 1 ≤ i ≤ n, 1 ≤ j ≤ k}

where for each s and t, Fst
{
Xi[fj]�Yij

}
is the

term Es [ft] which was previously rewritten
with the above rules.

By part 1 of Fact 1 and because bisimilarity is
a congruence relation it holds Xs [ft] ∼ Es [ft].
That implies by the definition of Fst and the
soundness of the rewrite rules that Xs [ft] ∼
Fst
{
Xi[fj]�Yij

}
for any s and t. So it follows

Xs [ft] ∼ Yst for any s and t by part 2 of Fact
1. In particular, X1 ∼ X1 [id] ∼ Y11 which is
the same as ∆ ∼ ∆′.

Example 2. Let f2 be the function that sub-
stitutes a by b and b by a and let ∆ = {X ,
aX[f2]}.

Now F = {id, f2} and

∆′ = {Y11 , aY12, Y12 , bY11}

because E1[f1] = aX[f2] and E1[f2] =
(aX[f2])[f2] ∼ b(X[f2][f2]) ∼ bX[f1]. ∆′ is
the relabelling-free equivalent of ∆.

Lemma 1.3. For any finite family of guarded
CCS equations ∆ = {Xi , Ei : 1 ≤ i ≤ n}
which does not involve restriction and rela-
belling we can effectively construct another
equivalent CCS process ∆′ in standard form.

Proof. Let E be the set of all subterms of the
Eis together with the nil process 0 and the Xis
themselves. Now let YE be a variable for each
E ∈ E . We will use a function unroll over E
defined as follows:

unroll(0) = 0
unroll(Xi) = unroll(Ei)
unroll(aE) = aYE

unroll(E + F) = unroll(E) + unroll(F)
unroll(E | F) =∑

ai(αi | YF) +
∑

bj(YE | βj)

+
∑
ai=b̄j

τ(αi | βj)

4

where
∑

aiαi = unroll(E)

and
∑

bjβj = unroll(F)

The rule for the composition is exactly the ex-
pansion law for composition [2]. It respects the
possibility for a potential communication action.
(See Example 3.) As we only consider guarded
expressions, this function is well-defined.

By induction we can show that unroll(E) is
in standard form. We therefore use an ordering
on CCS expression which is like the structural
ordering with the exceptions that Xi > Ei and
aE is a base case for all CCS expressions E.
Notice that the exception Xi > Ei does not in-
duce any circles because we restrict on guarded
expressions and therefore we will never find any
unguarded variable X in the Eis but we can
find an expression aE where Xi is a subexpres-
sion of E. But as our induction will use aE as a
base case this is no problem. On this ordering
the induction is easy to verify.

Let

∆′ = {YE , unroll(E) : E ∈ E}

By the same induction as above we can also
show that for any E ∈ E , YE ∼ E

{
YXi�Xi

}
.

Just use repeatedly the first part of Fact 1.

We further now by part 1 of Fact 1 that
YXi ∼ unroll(Xi). By definition of the function
unroll, unroll(Xi) = unroll(Ei). Again the first
part of Fact 1 tells us that unroll(Ei) ∼ YEi .
We know from above that YEi ∼ Ei

{
YXi�Xi

}
.

By transitivity we get YXi ∼ Ei
{
YXi�Xi

}
. This

gives us by the second part of Fact 1, YXi ∼ Xi.
In particular YX1 ∼ X1 and therefore ∆ ∼
∆′.

Example 3. This small example shall demon-
strate the expansion law for composition. Let
{X1 , aX3, X2 , āX4} be the (interesting)
part of a family of process equations. Then

unroll(X1) = unroll(aX3) = aYX3

and

unroll(X2) = unroll(āX4) = āYX4

Therefore

unroll(X1 | X2) = a(YX3 | YX2)

+ ā(YX1 | YX4)

+ τ(YX3 | YX4)

Compare this result to the first possible transi-
tions of X1 | X2:

X1 | X2

X3 | X2

X1 | X4

X3 | X4

a

ā

τ

ā

a

Example 4. Here is an example that will convert
the CCS process from Example 1 into standard
form. Let ∆ = {X , a(X | b)}. Then E =
{0, X,X|b, b}. We further know unroll(X) =
unroll(a(X | b)) = aYX|b, unroll(b) = bY0 and
unroll(X | b) = a(YX|b | Yb) + b(YX | Y0). It
follows:

∆′ = {Y0 , 0, Yx , aYX|b, Yb , bY0,

YX|b , a(YX|b | Yb) + b(Yx | Y0)}

Theorem 1.1. Given any finite family of
guarded CCS equations ∆ which either does
not involve restriction and relabelling or does
not involve communication, we can effectively
construct another finite family of CCS equa-
tions ∆′ in standard form in which ∆ ∼ ∆′.

Proof. If ∆ does not involve restriction and re-
labelling we use Lemma 1.3 to convert it into
a process in standard form. If it does not in-
volve communication, then we use first Lemma
1.1 and then Lemma 1.2 to convert it into a
process without restriction and relabelling and
afterwards use Lemma 1.3 to convert it into
standard form.

5

1.3 Ordering on variables

For the proof of decidability of bisimulation we
need the following ordering on V ar(∆)⊗.

Definition 1.4. Let @ be the well-founded or-
dering on V ar(∆)⊗ which is defined as follows:

Xk1
1 | X

k2
2 | · · · | X

kn
n @ X l1

1 | X
l2
2 | · · · | X

ln
n

iff there exists j such that kj < lj and for all
i < j holds ki = li.
Xm
i means k-times Xi in parallel with the com-

position operator. Remember the empty product
is 0.

@ is well-founded because it is nothing else
but the lexical ordering on tuples of natural
numbers, so 0 is the smallest process. Further-
more we are interested in the fact that @ is
total which means for all α, β ∈ V ar(∆)⊗ with
α 6= β it holds α @ β or β @ α. This is the
case because < over positive integers is total
and therefore the lexical ordering on tuples is
also total. Another important fact is that @ is
a congruence relation which means that α @ β
implies α | γ @ β | γ for any γ ∈ V ar(∆)⊗.

2 Decidability of the subset

Assume we have a finite family ∆ = {Xi ,
Ei : 1 ≤ i ≤ n} of guarded CCS equations in
standard form. We now want to decide for any
α and β of V ar(∆)⊗ if α ∼ β or not.

2.1 Tableau system

We do this with the tableau decision method
invented by Hüttel and Stirling [4]. Other than
they, we will use the tree upside-down to avoid
confusion when we later see proof trees for the
axiomatisation.

A tableau is a tree where all nodes are la-
belled with equations like E = F . The root is

Rec
unf(α) = unf(β)

α = β

Sum
{aiαi = bf(i)βf(i)}ni=1 {bjβj = ag(j)αg(j)}mj=1∑n

i=1 aiαi =
∑m
j=1 bjβj

with f : {1, ..., n} → {1, ...,m}
and g : {1, ...,m} → {1, ..., n}

Prefix
α = β

aα = aβ

SubL
β | γ = δ

α | γ = δ

if the dominated node is labelled
α = β or β = α with α A β

SubR
δ = β | γ
δ = α | γ

if the dominated node is labelled
α = β or β = α with α A β

Table 1: Rules of the tableau system

the equations we would like to test for bisimi-
larity. To get easier expressions we always sim-
plify CCS expressions in our tableaux within
the rules of the congruence relation ≡. This
also avoids confusion when dealing with equal
processes that are syntactically different.

Certain rules are applied to the nodes to build
up the tableau. These rules are only applied to
nodes that are not terminal. Terminal nodes
can be either successful or unsuccessful. A
successful terminal node is labelled α = α and
an unsuccessful terminal node is labelled aα = 0
or 0 = aβ or aα = bβ with a 6= b. A tableau is
successful if and only if all terminal nodes are
successful. Each rule has the form

E1 = F1 · · · En = Fn
E = F

The root of the rule represents the goal to be
achieved and the children are subgoals that
must be shown successful. Table 1 shows the
rules.

For the rule Rec we need unf(α) which means
unfolding of α (which is a more general version
of the rule unroll(E | F) in the proof of Lemma
1.3). Let Yi =

∑ni
j=1 aijαij for 1 ≤ i ≤ m.

(Notice that Yi can always be represented in

6

that way because we only consider CCS equa-
tions in standard form.)

unf(
m∏
i=1

Yi) =
m∑
i=1

ni∑
j=1

aij(

m∏
k=1
k 6=i

Yk | αij)

+
m∑

i,i′=1
i 6=i′

ni∑
j=1

ni′∑
j′=1

aij=ai′j′ 6=τ

τ(
m∏
k=1
k 6=i,i′

Yk | αij | αi′j′)

Furthermore we need some terminology.
Tableaux with root α = β are indicated by
T (α = β). Paths are denoted by π and nodes
by n or by r if it is the root. If the node is
labelled by E = F then we write n : E = F .

Basic nodes are nodes of the form n : α = β.
Basic nodes can dominate other basic nodes. A
node n : α | γ = δ or n : δ = α | γ dominates
any node n′ : α = β or n′ : β = α (with α A β)
which appears prior to n in the tableau and to
which rule Rec is applied. When a basic node
dominates a previous one, we apply one of the
Sub rules before applying the Rec rule.

Example 5. {X1 , a(X1 | X4), X2 ,
aX3, X3 , a(X3 | X4) + bX2, X4 , b} is a
CCS process in standard form. And this is a
successful tableau for X1 = X2.

X3 | X4 = X3 | X4
Prefix

a(X3 | X4) = a(X3 | X4)

X2 = X2
Prefix

bX2 = bX2
Sum

a(X3 | X4) + bX2 = a(X3 | X4) + bX2
Rec

X2 | X4 = X3
SubL

X1 | X4 = X3
Prefix

a(X1 | X4) = aX3
Rec

X1 = X2

2.1.1 Finiteness

Lemma 2.1. Every tableau for α = β is fi-
nite. Additionally there are only finitely many
tableaux for α = β.

Proof. Let T (α = β) be a tableau. Assume for
a contradiction that it is infinite. It can only
be infinite if it has an infinite path because

every node has finite degree. Suppose π is the
infinite path starting at the root r : α = β.
π must contain infinitely many basic nodes to
which rule Rec is applied because Sum and
Prefix only make the expressions smaller and
can alone only finitely often be used and the
Sub rules can also only finitely often be applied
because they are bounded by the relation @
which is well-founded.

Let S = {ni : αi = βi}∞i=1 be a sequence of
the basic nodes on path π to which rule Rec
is applied. So n1 is the root, n2 is the second
basic node on the path π, and so on. Note that
every α = β which is nothing else then

Xk1
1 | · · · | X

kn
n = X l1

1 | · · · | X
ln
n

can be written as a vector

ũ =
(
k1 · · · kn l1 · · · ln

)> ∈ N2n.

So we can rewrite sequence S by a sequence of
vectors {ũi}∞i=1 with ũi ∈ N2n for every i. The
first n coordinates of ũi represent αi and the
last n coordinates represent βi. Now consider
the sequence {ũi(1)}∞i=1 of the first coordinates
of S. This sequence contains either an infinite
constant subsequence (if the sequence is upper
bounded) or an infinite non-decreasing subse-
quence, which means ũi(1) ≤ ũj(1) for all i ≤ j
(if the sequence is not bounded). We extract
from S the related subsequence with the prop-
erty that its first coordinate is non-decreasing.
Now we continue with the second coordinate
and so on. In the end we arrive at an infi-
nite sequence {w̃i}∞i=1 where all coordinates are
non-decreasing.

But then every node in this sequence is domi-
nated by all nodes after it. This comes from the
fact that in a non decreasing sequence where
αi occurs before αj there exists γ for which
αi = αj | γ. Let us go back to vectors to see
this: If αi =̂ ṽi and αj =̂ ṽj (with ṽk ∈ Nn)
then γ =̂ ṽj − ṽi. As every coordinate was
non-decreasing it follows that every coordinate

7

in γ is non-negative and therefore it is a valid
process. Knowing that we can construct any
node of this sequence as a product of a previous
node and another process, it is easy to see that
there is always a Sub rule applicable. But if a
Sub rule is applicable that means that it must
be applied and the rule Rec cannot be applied
to any of these nodes.

It remains to show that there are only finitely
many tableaux for α = β. Assume for a contra-
diction that there were infinitely many tableaux
for α = β. As for any finite size there can
only be finitely many tableaux, the size cannot
be bounded. So there must exists an infinite
sequence of tableaux where the tableaux are
increasing in size. These tableaux must be
build up of a partial tableau to which we can
infinitely often apply some of the rules to create
theses larger and larger tableaux. But then we
must be able to apply these rules infinitely often
which means we get an infinite path through
the tableau. But that cannot be as showed
above.

2.1.2 Completeness

Theorem 2.1. If α ∼ β then there exists a
successful tableau with root labelled α = β.

Proof. Let α ∼ β. We know that we can con-
struct a tableau T (α = β). By Lemma 2.1
we know that this tableau will be finite so our
construction terminates. Now we have to show
that we can apply the rules in a way that every
node N : E = F satisfies E ∼ F . Since if this
is the case, every terminal will be successful
and therefore the tableau will be successful.

It is clear that the root r : α = β indeed sat-
isfies α ∼ β as this is what we assumed. If now
every rule is sound, we can show inductively
that the consequent nodes must also satisfies
that property. The rules Prefix and Sum can
easily verified to be correct, the rule Rec reflects
the expansion law for composition [2] which we

already saw in the proof for the standard form
and the Sub rules follow from the property of
bisimilarity to be a congruence relation.

2.1.3 Soundness

The proof of soundness of the tableau system
uses another characterization of bisimulation,
namely the sequence of approximations.

Definition 2.1. The sequence of bisimulation
approximations {∼n}∞n=0 is defined inductively
as follows.

• E ∼0 F for all processes E and F;

• E ∼n+1 F iff for each a ∈ Λ,

– if E
a−→ E′ then F

a−→ F ′ for some F ′

with E′ ∼n F ′;
– if F

a−→ F ′ then E
a−→ E′ for some E′

with E′ ∼n F ′.

Milner proved [2] that for finite-branching
transition graphs (our graphs are finite-
branching because we disallowed unguarded
expressions), bisimulation is the limit of the
above approximations:

∼=

∞⋂
n=0

∼n

Actually he showed that for all λ > k follows
∼λ ⊆ ∼k. So the relation ∼k decreases non-
strictly as k increases. As ∼k is bounded from
below by the empty relation ∅ and ∼0 can
be chosen finite, as it must only contain the
CCS expressions in our finite-branching transi-
tion graph, there must be a value ω for which
∼λ = ∼ω for each λ > ω. This limit is ∼.

Theorem 2.2. If there is a successful tableau
for α = β then α ∼ β.

Proof. Assume that α � β and T (α = β) is
a tableau for α = β. We construct a path

8

π = {ni : Ei = Fi} through this tableau
starting at the root n1 : α = β.

On our way through the nodes of path
π we also construct a sequence of integers
{mi : Ei �mi Fi and Ei ∼j Fi for all j < mi}.
So this sequence describes for every node up
to which value the bisimulation approximation
holds. As we know that α � β, the value m1

of our sequence must be finite. We will then
see that we can chose the nodes so that this
sequence is non-increasing. Together this will
show that for each i holds Ei � Fi. So we
will find a terminal which is not successful and
therefore also the tableau is not successful.

Let ni : Ei = Fi be the current node on the
path and mi the corresponding value from the
sequence. Now we construct ni+1 : Ei+1 = Fi+1

and mi+1 like this:

• If we can apply Sum to ni then we will
get several successor. For at least one
of them must hold Ei+1 �mi Fi+1 (other-
wise we would have Ei ∼mi Fi). We take
this one as new node nn+1. That means
mi+1 ≤ mi.

• If Prefix is applied to ni then the next
node is ni+1. mi+1 = mi − 1 because this
correspond to one recursion step in the
Definition 2.1.

• If we apply Rec to ni then the next node is
the one that is produced and mi+1 = mi.

• If SubL is applied then Ei = Fi must be
of the form α | γ = δ and the dominated
node is nj : α = β with α A β. As between
these two nodes there must be at least one
application of the rule Prefix, it holds that
mi < mj . We take nn+1 : β | γ = δ.
To show that mi+1 ≤ mi it suffice to
show that β | γ �mi δ. And this follows
from α ∼mi β and α | γ �mi δ because
β | γ ∼mi δ together with α ∼mi β would
otherwise have implied α | γ ∼mi δ. SubR
works similar.

This shows that for the terminal {nt : Et = Ft}
it must also hold Et �mt Ft with mt ≤ m1. So
the terminal is unsuccessful and therefore also
the tableau.

2.2 Decidability

Theorem 2.3. bisimulation equivalence is de-
cidable on CCS processes which either do not
involve the restriction and relabelling operators
or do not involve communication.

Proof. As seen in Theorem 1.1, we can convert
CCS processes which either do not involve the
restriction and relabelling operators or do not
involve communication, into standard form. For
CCS processes in standard form we can generate
tableaux. If we find a successful tableau we
simply answer ’yes’. As there are only finite
number of them we can stop when they have
all been listed and answer ’no’. By soundness
and completeness of the tableau system, we will
always give the right answer.

3 Axiomatisation of the sub-
set

At the end we will talk about an equational the-
ory for CCS processes. We will only use CCS
processes without restriction and relabelling
or without communication. Therefore we can
restrict on processes in standard form as Theo-
rem 1.1 showed. Let ∆ be such a CCS process
in standard form. The theory will be parame-
terized by ∆.

3.1 Axioms

Will will use statements like Γ ` E = F where
Γ is a set of assumptions of the form α = β and
E and F are CCS expressions. The semantic
interpretation of a sequent Γ ` E = F , which
we write as Γ |= E = F , is as follows: if for
all (α = β) ∈ Γ holds α ∼ β, then E ∼ F . We

9

Equivalence

R1 Γ ` E = E

R2 Γ ` F = E
Γ ` E = F

R3 Γ ` E = F Γ ` F = G
Γ ` E = G

Congruence

R4 Γ ` E = F
Γ ` aE = aF

R5
Γ ` E1 = F1 Γ ` E2 = F2

Γ ` E1 + E2 = F1 + F2

R6
Γ ` E1 = F1 Γ ` E2 = F2

Γ ` E1 | E2 = F1 | F2

Axioms

R7 Γ ` E + (F +G) = (E + F) +G

R8 Γ ` E + F = F + E

R9 Γ ` E + E = E

R10 Γ ` E + 0 = E

R11 Γ ` E | (F | G) = (E | F) | G

R12 Γ ` E | F = F | E

R13 Γ ` E | 0 = E

Assumption Introduction
R14 Γ, α = β ` α = β

Assumption Elimination

R15
Γ, α = β ` unf(α) = unf(β)

Γ ` α = β

Table 2: Axiomatization

write ` E = F and |= E = F for ∅ ` E = F
and ∅ |= E = F .

Table 2 shows the axioms and inference rules.

Definition 3.1. A proof of Γ ` E = F is a
proof tree with root labelled Γ ` E = F . All
leaves in this tree must be instances of the ax-
ioms R1 and R7-R14. The inference rules R2-
R6 and R15 specify the relation between a node
and its children.

3.2 Soundness

Theorem 3.1. If Γ ` E = F then Γ |= E = F .
In particular, if ` E = F then E ∼ F .

Proof. Let α ∼ β for all (α = β) ∈ Γ, but
E � F . Assume for a contradiction that T is a
proof tree for Γ ` E = F .

We construct a maximal path π = {Γi `
Ei = Fi} from the root to one of the leaves.
We construct it so that Ei ∼ Fi holds for all i
on the path. This is possible because if it were
not, we would get a tree in which all children
consist of two bisimilar expressions Ei and Fi.
But that implies (if we follow the way back
to the root) that the root also consists of two
bisimilar processes which is false. In addition
we construct a sequence {mi : Ei �mi Fi and
Ei ∼mi−1 Fi} on the way. This sequence will be
non-increasing and strictly decreasing through
applications of R4.

The leaf in our path π, say Γl ` El = Fl must
be an instance of the axiom R14 (of the form
Γ′, α = β ` α = β) because all other axioms
would imply El ∼ Fl.

In the beginning it must hold (α = β) /∈ Γ
because we assumed every equation in Γ is true
but the equation in the leaf of path π cannot be
true. To insert the assumption α = β to Γ we
needed an application of rule R15. We say this
application is at level j. Between the leaf and
this node there must be also one instance of R4
because R15 produces guarded expressions but
the axiom is for unguarded expressions. We

10

say this application is at level k. So we get the
following path:

R14 Γ′, α = β ` α = β (level l)
...

R4
Γ′, α = β ` α′ = β′

Γ′, α = β ` aα′ = aβ′ (level k)

...

R15
Γ′′, α = β ` unf(α) = unf(β)

Γ′′ ` α = β
(level j)

...
Γ ` E = F (level 1)

Now we look back to our sequence. Because
of the application of rule R4 we know that
ml < mj . The value ml implies that α �ml β
because α = β is the equation at level l. But the
sequence also tells us that α ∼mj−1 β because
of the node at level j. As ml ≤ mj − 1 follows
α ∼ml β which is a contradiction.

3.3 Completeness

Definition 3.2. For any node n of a tableau,
Recnodes(n) denotes the set of labels of the
nodes above n to which the rule Rec is applied.
In particular, Recnodes(r) = ∅ where r is the
root of the tableau.

Theorem 3.2. If α ∼ β then ` α = β.

Proof. Let α ∼ β. Then there exists a suc-
cessful finite tableau T (α = β). We show that
for any node n : E = F of the tableau holds
Recnodes(n) ` E = F .

We show this by induction on the depth of the
subtableau with the current node as root. Since
we built the tableau modulo the congruence
relation ≡ we will assume that the axioms R7,
R8 and R10-R13 are used whenever they are
needed.

If n is a terminal then this must be a suc-
cessful terminal of the form α = α. Therefore
Recnodes(n) ` E = F follows from Rule R1.

Now let n : E = F be not a terminal node.
We distinct some cases:

• If E = F is of the form aγ = aδ then
the rule Prefix is applied. By the induc-
tion hypothesis on the child n′ we know
that Recnodes(n′) ` γ = δ holds. As
Recnodes(n) = Recnodes(n′) it follows by
rule R4 that Recnodes(n) ` aγ = aδ

• If E = F is of the form
∑n

i=1 aiαi =∑m
j=1 bjβj than rule Sum is applied. By

induction we know for all children nk :
aikαik = bjkβjk that Recnodes(nk) `
aikαik = bjkβjk . As Recnodes(n) =
Recnodes(n′) if follows from rule R5, R7,
R8 and R9 that Recnodes(n) ` E = F .

• If E = F is of the form γ = δ and its son
n′ is unf(γ) = unf(δ) than the rule Rec
was applied. By the induction hypothesis
holds Recnodes(n′) ` unf(γ) = unf(δ). As
Recnodes(n) = Recnodes(n′)∪{(γ = δ)} it
follows from rule R15 that Recnodes(n) `
E = F .

• If E = F is of the form µ | γ = δ
and the dominated node is n′ : µ = η
with η @ µ. So SubL was applied. The
son n′′ is labelled η | γ = δ. By induc-
tion we know Recnodes(n′′) ` η | γ =
δ. As Recnodes(n) = Recnodes(n′′) and
(µ = η) ∈ Recnodes(n), if follows by rule
R14, R3, R6 and R1 that Recnodes(n) `
µ | γ = δ. SubR works similar.

Since Recnodes(r) = ∅ for the root r,
Recnodes(r) ` E = F , what we just showed,
implies ` α = β what we wanted to show.

Example 6. Let {X1 , a(X1 | X4), X2 ,
aX3, X3 , a(X3 | X4) + bX2, X4 , b} be a
CCS process. (It is the same process as in
Example 5.) Table 3 contains a proof for
X1 = X2. To make it easier to read we use
these abbreviations: Γ1 = {X1 = X2} and
Γ2 = Γ1 ∪ {X2 | X4 = X3}.

11

Γ1 ` X1 = X2 (R14) Γ1 ` X4 = X4 (R1)
R6

Γ1 ` X1 | X4 = X2 | X4

Γ2 ` X3 | X4 = X3 | X4 (R1)
R4

Γ2 ` a(X3 | X4) = a(X3 | X4)

Γ2 ` X2 = X2 (R1)
R4

Γ2 ` bX2 = bX2
R5

Γ2 ` a(X3 | X4) + bX2 = a(X3 | X4) + bX2
R15

Γ1 ` X2 | X4 = X3
R3

Γ1 ` X1 | X4 = X3
R4

Γ1 ` a(X1 | X4) = aX3
R15 ` X1 = X2

Table 3: Proof tree for X1 = X2

4 Conclusion

CCS allows the description of any computable
function and is therefore universal. But as any
considerable equivalence problem is undecid-
able, full CCS is not the right choice for many
applications. For some of these applications it
is enough to use only finite state systems where
the equivalence problem is easily proved to be
decidable.

But most realistic functions and processes
involve infinite state systems. This is where
the topic of this paper gets interesting. Both,
CCS without restriction and relabelling and
CCS without communication describe a rich
class of infinite state systems where equivalence
checking is decidable.

So Christensen et al. did a good job by show-
ing that these two sublanguages are decidable.
But it is worth noting that this work is based
on another paper of them from 1993 [6] where
they showed that CCS without restriction, re-
labelling and communication is decidable. And
their ideas are similar in spirit to the work by
Hüttel and Stirling [4] on context-free processes.
But remember that context-free processes and
CCS without restriction, relabelling and com-
munication can both express processes that
cannot be expressed by the other language.

References

[1] S. Christensen, Y. Hirshfeld, F. Moller.
Decidable Subsets of CCS. 1994

[2] R. Milner. Communication and Concur-
rency. 1989

[3] D. Taubner. Finite representations of CCS
and TCSP programs by automata and
Petri nets. 1989

[4] H. Hüttel, C. Stirling. Actions speak
louder than words: proving bisimilarity
for context-free processes. 1991

[5] D. Park. Concurrency and automata on
infinite sequences. 1981

[6] S. Christensen, Y. Hirshfeld, F. Moller.
Bisimulation equivalence is decidable for
basic parallel processes. 1993

12

