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@ Random numbers

© STATISTICS
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Discrete Event Simulation Infroduction

SIMULATION

@ Instead of numerically analysing a system.
@ Perform single runs of the system.
e Define a stopping criterion v,
e contfinue simulating the system until ¥ is fulfilled.
@ Collect information from single runs and make a conclusion.
@ No exhaustive simulation,
e result has some uncertainty.
@ Time-advance mechanism is used.

e Clock times are sampled,
e simulation clock advances in a discrete step.
e Simulation time # real time.
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Discrete Event Simulation

CLASSIFICATION

Infroduction

=

Simulation

continuous
event

\

discrete
event

/\

time
based

event
based

T

event
oriented

process
oriented

@ Discrete-event simulation: systems are discrete state systems.
@ Time is continuous.
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Discrete Event Simulation Infroduction

TIME-BASED SIMULATION

@ Define fixed step size At.
@ Check whether events happenin [t, 1 + At].
@ If so, execute events.
@ Advantage.
o Easy to implement.

@ Disadvantages.

e Events are assumed to have no order,
e events are assumed to be independent.
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Discrete Event Simulation Infroduction

EVENT-BASED SIMULATION

@ Time steps have variable length.
@ Occurrence of events controls length of time step.

@ Exactly one event per time step.
@ Actual event causes future events to occur.
o Gathered in an ordered event list.

@ Events have to be inserted in order.
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Discrete Event Simulation Infroduction

EXAMPLE — G|G|1 SIMULATION
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Discrete Event Simulation Infroduction

IMPLEMENTATION STRATEGIES

@ Event oriented.

e Procedure P, for every event-type i

e P;invoked if occurring event is of type i.
@ Process oriented.

e Associate process with each event-type.
e Processes interchange information via communication.
e Scheduling of events is done implicitly.
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Discrete Event Simulation Random numbers

...AND PSEUDO RANDOM NUMBERS

@ Generate random number from given probability
distribution.
@ Has to conform to the given distribution, otherwise
e obtained simulation results are suspicious.
@ True random numbers can not be generated with
deterministic algorithms.
@ Pseudo-random numbers are used.

e Generate pseudo-random series on finite subset of N,

o Compute pseudo-uniformly distributed numbers on [0, 1].

e Verify if generated numbers can be regarded as true random
numbers.

Compute non-uniform distributed pseudo-random numbers.
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Statistics

SET-UP

@ nsingle runs or samples of the system have been performed.

@ nis called the sample size.

@ Measures of interest are recorded for each sample, e. g.,
o (expected) waiting time in a queue,
o (expected) number of jobs in a queue.
o Remark: for both examples one has to simulate more than

one customer!
@ Statistics is used to estimate measure of interest for the
complete system, i. e., for all possible system runs.
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Statistics Value estimation

OBTAINING A CONCRETE VALUE

@ E.g.. estimation of mean value.

@ Assert that mean value lies in a particular inferval with given
certainty.

@ Inferval is called confidence interval.
@ Certainty is called confidence level.
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Statistics Value estimation

ESTIMATING THE MEAN

@ Esfimate unknown mean value p of random variable X.

@ X is supposed to have unknown variance ¢2.

@ Our simulation generate nsamples x;,i=1,2,...,n.

@ Each x; is a realisation of random variable X;.

@ X;,i=1,2,...,nare independent and identically distributed

with
o EX] =
] U)z(i = 0'2.
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Statistics Value estimation

ESTIMATOR

@ Estimator X(n) should be
e unbiased, i.e., E[X(n)] = p.
e Intuition.
Q Perform very large number of experiments,
© each resulting in an estimator Xi(n),

© average of Xi(n) wil be .
@ Point estimator for the sample mean is X(n) = y

@ Point estimator for the sample variance is
SQ(I’)) _ S Xi=X(n)?
n—1 '
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Statistics Value estimation

ESTIMATING THE MEAN

@ Problem with X(n) is

e how close is it to u?
o On one experiment it may be close,
e on another it may differ by a large amount.

@ X(n) is a random variable with variance
o Var[X(n)] = 2.

n

@ An unbiased esTQimo’ror of the variance is
o Var[X(n)] = =),
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Statistics Value estimation

CONFIDENCE INTERVAL - 1

@ Construct the random variable Z, = x(”)_“.

@ Define Fn(z) = Pr(Z, < z).i.e., Fa(2) is the probability
distribution function of Z,.

THEOREM (CENTRAL LIMIT THEOREM)
Fn(z) — ®(2) as n — oo, with

V4
q>(z):\/17ﬁ/ eV’ 2dy

: —(x—zmz
(] fx(X): \/We 205,

e density function of normal distribution with mean x and
variance o?. ‘ ‘
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Statistics Value estimation

CONFIDENCE INTERVAL - 2

@ Intuition behind Cenftral Limit Theorem.

e Random variable Z,(z) is for large n distributed as a standard
normal random variable
e independent of the distribution of the X;.

@ Thus, X(n) is distributed as a normal random variable with
. 2
mean p and variance %
@ Generally, o2 is unknown.

@ Replace o2 by $?(n) for sufficiently large n.
X()—n_jg approximately distributed as a standard

= simm

normal random variable.
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Statistics Value estimation

CONFIDENCE INTERVAL - 3

@ Forlarge nit follows

%
|
Q

@ Where z;_, » denotfes the 1 — a/2 single sided critical value
of the standard normal distribution.
a ‘
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Statistics Value estimation

CONFIDENCE INTERVAL - 4

@ For sufficiently large n a confidence interval with confidence
level 1 — « is given by

- S$2(n
X(0) £ 210y >0

@ Infuifion.

@ Let 8 =1 - a be the desired confidence level,
© construct a large number of independent confidence
intervals with confidence level 3,

e each based on n observations, with sufficiently large n,
© the proportion of intervals containing . is 3.
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Statistics Value estimation

CONFIDENCE INTERVAL - 5

@ What does it mean?
... nsufficiently large. . .

e Too small n will cause a confidence level less than 1 — a.

@ fnis called a Student’s t distribution with degree of freedom
n—1.
e For n— oo, T, approaches the normal distribution.

@ For a Student’s distribution with n — 1 degrees of freedom
fh-1,1-as2 I8 the 1 —a/2 one sided critical value.
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Statistics Value estimation

EXAMPLE

® (x1,%,...,%5) = (0.108,0.112,0.111,0.115,0.098).
@ Sample mean X(5) = m —0.1088.

@ Sample variance $2(5) = M — 0.0000427.

@ Confidence level is supposed ’ro bel—-a=009.
@ Suppose b is sufficiently large.
o Look up 7595 = 1.645 for one-sided critical value.
o Pr(0.1040 < 1 <0.1136) =0.9.
e But you know, 5 will not be sufficiently large.
@ Take Student’s distribution.

e Look up 7('4,0_95 =2.132.
e Pr(0.1026 < ;1 <0.1180) =0.9.
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Statistics Hypothesis testing

ANSWERING A YES/NO QUESTION

@ No concrete estimation of a value possible.
@ Reject or accept educated guess, but
o there is no estimation of the real value.

@ The question is different from value estimation.

@ We want to know if we can accept/reject a particular
assertion, usually called null-hypothesis.
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Statistics Hypothesis testing

HYPOTHESIS TESTING

@ Formulate two mutually exclusive and exhaustive
hypotheses,

e null-hypothesis Hy, here f(x),
e alternative hypothesis Hy, here f(x).

@ Run a simulation and depending on the results

e accept Hy,
e accept H;.

@ Since we are only taking samples, errors are involved

e type l-error, significance, o error,
o type ll-error, j.

@ «is called the wrong negative,
o the probability to reject Hy although it is frue.
@ [ is called the wrong positive,
o the probability to accept Hy although H, is true.
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Statistics Hypothesis testing

SEQUENTIAL SAMPLING

@ Instead of having a fixed sample size

e evaluate probabilities after each sample.
@ During simulation it could be that

e there is enough evidence to

e accept Hy.,
e reject Hy,

e there is no evidence to accept/reject Hg.
@ A fixed sample size ignores this.

@ With sequential sampling: decide after each sampile if it is
either

o true, or
o false, or
e another sample is required.
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Statistics Hypothesis testing

DEVELOPING A TEST

@ Sample space M, m=1,2,...,00,
o M support of probability distribution,
e a € My, is called sample point of size m.

@ Divide My, in
o RY,
° /?,]n,
e Rm.
@ Termination: sample point of size n falls in
o R%, accept Hy,
e R}, accept H;.
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Statistics Hypothesis testing

COMPUTING PROBABILITIES

@ k samples have been taken.
@ g« probability that H; is true affer k observations.

@ P probability density in k—dimensional sample space,

assuming H; is valid.
o Pik(XXo,0Xk)
® ik = 22 Pi k(X1 XXk ) *
@ Accept either of the hypothesis if g; , is above ag;.
oIf

° P1.k(X1:X2,-5Xk)
Po,k(X1,X2,---Xk)
P1k(X1,X2,---5Xk)

Po k(1% X)) =
@ It can be shown
° Az]—JI

«
e Br 1L
—

> A, accept H;,
<B,

° accept Hp.
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Statistics Hypothesis testing

PRECISELY
0 A= a
N
0 \n = P1.k (X1, %0, Xk)

Pok(X1,X0,-,%) *

@ Continue sampling when
e B<\h <A

@ Accept Hy when
e \p<B.

@ Reject Hy when
e \p> A
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Statistics Hypothesis testing

AIRBAG DEPLOYMENT EXAMPLE - 1

@ FoVW car company’s airbag deployment rate.
@ Required rate 98%.
@ Recent customer reports indicate rate 80%.
@ Define H.
080 ,x=1,
° folx) = {0.20 x=0.
@ Define H;.
098 ,x=1,
° k)= {0.02 x=0.
@ Choosing the errors.

e o = 0.01 (false negative),
e = 0.05 (false positive).
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Statistics Hypothesis testing

AIRBAG DEPLOYMENT EXAMPLE - 2

Boundaries
@ A.— -8 _os B:= £ =0.051

Taking samples
@ Airbag deploys.

0 0.051 < Ay = 7t} = 898 = 1.225 < 95.

©Q Airbag deploys not.

o 0.051 < X = g} = 585% = 0.1225 < 95,
© Airbag deploys not.

o Mg = P08 — 058002 — 0.01225 < 0.051.
© Conclusion: accept Hy.
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Model checking

USsING DES FOR CSL MODEL-CHECKING

@ Checking P>¢ (p).
e pis a CSL path formula.

@ Simple case. No nesting of probabilistic statements.
e p does not contain P.
e Truth value of p can be determined without error.

e Sequential sampling can be applied directly,
e choose boundaries carefully.
@ Complicated case. Nesting of probabilistic statements.
e p contains P operator.
Truth value of p can be erroneous.
How to handle innermost formula?
Adjust error bounds o’ and g’ for inner most formula,
could lead to more samples!

®© 6 o o
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Model checking

[3 Boudewijn R. Haverkort.
Performance of Computer Communication Systems: A
Model-Based Approach.
John Wiley & Sons, Inc., 1998.

4 A.M.Law and W. D. Kelton.
Simulation, Modelling and Analysis.
McGraw-Hill Education, third edition, 2000.
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